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Abstract. In the presence of covariates, the dependence structure of a vector of
random variables can be modelled by using conditional copula function. If the lat-
ter belongs to a parametric copula family, say Cθ, an important question is how
the dependence parameter θ is related to these covariates. In this paper, we pro-
pose a wavelet-based regression approach to estimate the relationship between
θ and some real-valued covariate. We consider wavelet shrinkage estimators and
show their performance via a simulation study. An application to a meteorological
dataset reveals that the temperature influences the dependence structure between
the maximum and the minimum relative humidity variables, whenever it takes
either very large values or very small values.
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Résumé (Abstract in French) En présence de covariables, la structure de
dépendance entre variables aléatoires peut être modélisée à l’aide d’une fonction
de copule conditionnelle. Si cette dernière appartient à une famille de copules
paramétriques, Cθ, une question importante est de savoir comment le paramètre
de dépendence de copule θ est lié à ces covariables. Dans cet article, nous pro-
posons une approche de régression par ondelettes pour estimer la relation entre
le paramètre de dépendance θ et une certaine covariable réelle observée en même
temps que les variables d’intérêt. Nous considérons des estimateurs non linéaires
d’ondelettes et montrons leur performance à travers une étude de simulation. Une
application à des données météorologiques révèle que la température influence la
structure de dépendance entre les variables d’humidité relative maximale et mini-
male, dès qu’elle prend des valeurs assez grandes ou assez petites.
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1. Introduction

Currently, copulas are widely used for modeling dependence structure between
random variables. They have been applied in various domains such as : finance,
insurance, survival analysis and meteorology. A large class of parametric copula
models, describing different types of dependence, are introduced in the litera-
ture. However, when the dependence structure of a given random vector is influ-
enced by the values of another measured covariate, it is convenient to deal with
the conditional copula model. In this paper, we are interested in estimating non-
parametrically the functional relationship between the dependence parameter, θ,
of a parametric conditional copula model, and some real co-variate X. In the liter-
ature, this relationship is often described as

θ(X) = g−1(η(X)), i.e., g(θ(X)) = η(X), (1)

where g−1 is a known inverse link function ensuring that the dependence param-
eter, θ, considered as a function of the covariate X, takes values in the correct
range; η is the so-called calibration function which adjusts the level of dependence
on the covariate values.

Since the extension of Sklar’s theorem Patton (2006) to conditional distribution
functions, bringing more flexibility to copulas, dependence modeling via condi-
tional copula function has gained an increasing interest amongst researchers.
For instance, dealing with the Clayton copula family, Craiu (2009) proposed a
parametric approach, where the dependence parameter θ is a simple linear func-
tion in the covariate X . He utilized the maximum likelihood method to estimate
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the coefficient in the linear relation. Assuming known marginal distributions,
Acar et al.(2011) provided a nonparametric approach based on local polynomial
techniques to estimate the calibration function η within a local likelihood frame-
work. This approach has been extended by Abegaz et al.(2012) to the case of
unknown marginal distributions.

In the same spirit, Zou (2015) proposed a penalized estimation approach
that allows parsimonious and enhanced interpretation of dependence struc-
tures of random variables; whereas Sabeti (2013) employed cubic splines in a
Bayesian framework. By letting the marginal distribution functions unspecified,
Gijbels et al.(2011) also proposed a testing methodology with various parametric
forms for the calibration function η.

In this paper, we propose a wavelet-based estimation approach to the calibration
function η. Indeed, wavelet series allow parsimonious expansion of various types
of functions. Because of their good localization properties, wavelet bases adapt
well to local features of many kinds of functions, including inhomogeneous and
discontinuous ones. The approximation properties of wavelet bases are discussed
at length in Härdle et al.(1998). For more details on wavelet theory, we refer to
Daubechies (1992), Mallat (1989), Meyer (1992), Vidakovic (1999) and references
therein.

The methodology of this paper employs a regression model which is based on a
binning procedure. Precisely, we deal with a fixed design wavelet regression model,
where the response variable is defined by the quantity Z := η(X) = g(θ(X)), and
the predictor is the covariate X. We first partitionne the support of the covariate
X into a finite number m of bins and construct, for each bin, an empirical value
representing the function parameter θ(·) in that bin. Then, since the link function
g is known, we will apply it to these empirical values (associated with the bins)
to obtain a series of observations of the function η, which we considered here as
a theoretical signal corrupted by an additive noise. This allows us to use wavelet
shrinkage techniques to estimate the true calibration function η.

The paper is organized as follows. Section 2 describes the methodology. After re-
calling some facts on the wavelet expansion on the interval [0,1], we present the
binning procedure along with Mallat’s pyramidal algorithm. We also discuss in this
section asymptotic minimax properties of the linear and nonlinear wavelet shrink-
age estimators. In Section 3, we make simulation experiments to first study the
effect of the binning, with different bin sizes, on the performance of the estima-
tors, and then to compare the different parametric copula families utilized. Section
4 presents an application to a real dataset, while Section 5 concludes the paper.
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2. Methodology

2.1. Wavelet expansion on the interval

If the function η belongs to L2([0, 1]), the space of measurable and square integrable
functions defined on [0, 1], we can use wavelet bases on the interval [0, 1] to expand
η. Let φ be a scaling function and ψ be its associated mother wavelet. Assume that
both of φ and ψ are compactly supported, and for all integers j ∈ Z, k ∈ Z, introduce
the functions

φj,k(x) = 2j/2φ(2jx− k); ψj,k(x) = 2j/2ψ(2jx− k).

Let j0 ∈ N be a fixed, in Cohen et al.(1993) it is constructed an orthonormal wavelet
basis for the space L2([0, 1]), with exactly 2j basis functions at each scale j ≥ j0.
Precisely, the family {φj0,k : k = 0, . . . , 2j0 − 1}

⋃
{ψj,k : j ≥ j0, k = 0, . . . , 2j − 1}

forms an orthonormal basis for L2([0, 1]). Thus, our calibration function η can be
decomposed as follows:

η(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1], (2)

where αj0,k =
∫ 1

0
φj0,k(x)η(x)dx and βj,k =

∫ 1

0
ψj,k(x)η(x)dx are respectively the

scaling and detail coefficients; the parameter j0 is called a resolution level.

Note that the orthonormal bases proposed in Cohen et al.(1993) are boundary
adapted. That is, the corresponding wavelet transform automatically handles the
boundary effects. There are also other methods for correcting the boundary bias
of wavelet estimators such as : periodization, symmetrization and zero padding.

2.2. A binning procedure

Consider n independent and identically distributed observations {(Y1i, Y2i, Xi)}ni=1

of a random triple (Y1, Y2, X). Suppose that X is a continuous covariate, with sup-
port [a, b],−∞ < a < b < ∞, and (Y1, Y2) is a continuous random couple, with
marginal distributions F1 and F2, whose dependence structure is influenced by
the values of the covariate X. Let Hx, F1x and F2x denote respectively the joint and
marginal conditional distributions given X = x of the pair (Y1, Y2). The conditional
version of Sklar’s Theorem says that : for any x in the support of X there exists a
unique copula function Cx such that

Hx(y1, y2) = Cx(F1x(y1), F2x(y2)), y1, y2 ∈ R. (3)

Cx represents the dependence structure extracted from the joint conditional dis-
tribution Hx. In this paper, we will assume that Cx belongs to a given parametric
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copula family Cθ; that is, its form does not change with the co-variate values
x. However, the x values adjust the level (or strength) of dependence , which is
measured by the parameter θ, so that we can write Cx(u1, u2) ≡ C(u1, u2, θ(x)), with
θ(x) satisfying model (1).

If the conditional margins F1X and F2X are known, then we deal with real obser-
vations U1i = F1X(Y1i/Xi) and U2i = F2X(Y2i/Xi) drawn from the model

(U1i, U2i)/Xi ∼ C(u1, u2; θ(Xi)), (4)

where θ(Xi) = g−1(η(Xi)), for i = 1, . . . , n.
If F1X and F2X are unknown, one can replace U1i and U2i by pseudo-observations
as, for example, in Abegaz et al.(2012) :

Û1i = F̂1X(Y1i|Xi), Û2i = F̂2X(Y2i|Xi), for i = 1, . . . , n, (5)

where for j = 1, 2 and I(·) denoting the indicator function,

F̂jX(y|x) =

n∑
i=1

wn,i(x, h)I(Yji ≤ y),

with

wn,i(x, h) =
Kh(Xi − x)∑n
k=1Kh(Xk − x)

, and Kh(·) =
1

h
K
( ·
h

)
,

where h denotes a bandwidth controlling the smoothness and K(·) is a symmetric
kernel function. Recall that our aim is to determine the relationship between the
copula parameter θ(·) and the co variate X; that is to estimate the calibration
function η(·). The definition of the quantity Z := η(X) = g(θ(X)) suggests us using a
regression framework. But, we do not have direct observations of the random vari-
able Z, which depends upon the functional copula parameter θ(·). In order to use
a regression setting, we will construct, for the random variable Z, a series of ob-
servations based on a suitable finite grid of points located in the support [a, b] of X.

Let ∆ > 0 be a fixed real number. Let m be a positive integer less than n, and
xl, l = 1, . . . ,m be a finite grid of points defined in such a way that the support [a, b]
of X is partitioned into intervals (or bins), Il, centered at the points xl with common
radius ∆, i.e.

Il ∩ Il′ = φ for l 6= l′ and Il = {x ∈ [a, b] : |x− xl| ≤ ∆}, l = 1, . . . ,m.

Introduce the blocs of pairwise observations
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Bl = {(Y1i, Y2i) : 1 ≤ i ≤ n, Xi ∈ Il}, l = 1, . . . ,m.

To obtain observations for the random quantity Z = g(θ(X)), we have to approx-
imate the unknown parameter function θ(·) over each bin Il centered at xl by a
constant. To this end, we first choose ∆ small enough so that θ(·) is invariant
within each bin Il; i.e., θ(x) = θ(xl) =: θl, for all x ∈ Il, where θl is a real constant
that would be the true copula parameter value if the covariate X were only
restricted in the interval Il. Then, we estimate each θl based only on the pairewise
observations (Y1i, Y2i) in the corresponding bloc Bl of size nl. This procedure yields
a series of estimators, say θ̂l, l = 1, . . . ,m approximating the parameter function
θ(·) locally over the different bins Il, l = 1, . . . ,m.

To define θ̂l, l = 1, . . . ,m, we use the Kendall’s tau inversion method. We first com-
pute the empirical Kendall’s tau within the bloc Bl, and then invert the theoretical
Kendall’s tau formula (pertaining to the considered copula family) to get an estimate
θ̂l for each θl. Thus, applying the link function g, we obtain a series of empirical
values, say Zl := g(θ̂l), l = 1, . . . ,m, that may be considered as independent random
observations of the quantity Z = g(θ(X)).
Now for each l = 1, . . . ,m, it is clear that θ̂l is a consistent estimator of θl. Indeed,
since the variables Y1 and Y2 are supposed to be continuous, the empirical Kendall’s
tau within the bloc Bl, defined as τ̂l = 2/C2

nl

∑
i<j δij − 1, with δij = I(Y1i < Y1j , Y2i <

Y2j) + I(Y1i > Y1j , Y2i > Y2j), is a consistent estimator of τl (the theoretical Kendall’s
tau of the population from which the bloc Bl is drawn). By inversion of τ̂l, we get
θ̂l which is also a consistent estimator of θl. Finally, as g is known, recalling the
definition of Zl, a consistent estimator of g(θl), say ĝ(θl), is given by

ĝ(θl) = g(θ̂l) = Zl,

But within each bin we have g(θl) = g(θ(xl)) = η(xl) in view of relation (1). Hence

η̂(xl) = Zl.

This suggests us considering the following regression model :

Zl = η(xl) + εl, l = 1, . . . ,m, (6)

where εl, l = 1, . . . ,m, are i.i.d random errors with zero mean and variance σ2 ; and
η(·) represents the calibration function that we want to recover here nonparametri-
cally.
To this end, we propose a wavelet shrinkage approach. That is, we will consider
the function η(·) as a theoretical signal, of which, noisy observations are given
by a realization of the random series Zl = g(θ̂l), l = 1, . . . ,m ; and we will denoise
this series by using wavelet transforms. For fixed design models, it is usually
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assumed without loss of generality that the sample points xl are within the unit
interval [0, 1] and are equidistant, for example xl = l

m , l = 1, . . . ,m. Furthermore,
the number of sample points xl should be a power of 2, i.e. m = 2J , J ∈ N∗. These
assumptions allow to perform both the Discrete Wavelet Transform (DWT) and its
inverse (IDWT) using Mallat (1989) pyramidal algorithm.

Let W be the orthogonal transform matrix associated with a given wavelet basis.
Then applying this algorithm yields an approximation η̂ of the calibration function
η after the following steps :

1. Consider a sequence z = (z1, . . . , zm) of realizations of (Z1, . . . , Zm) ;
2. Apply the forward DWT to obtain a vector of wavelet coefficients : ω = Wz;
3. Apply a thresholding function δ(·) to obtain the estimated coefficients : ω̂ = δ(ω);
4. Apply the inverse IDWT to obtain an approximation of the function η over

the grid-points : η̂ = WT ω̂, where WT denotes the transpose of W , and η̂ =
(η̂1, . . . , η̂m) is a vector of m components approximating the function η over the
grid-points, i.e. η̂l = η̂(xl), l = 1, . . . ,m.

2.3. Minimax properties

In this section we discuss asymptotic minimax properties of wavelet-based esti-
mators of η in both cases of linear and nonlinear shrinkage rules. Without loss of
generality the support [a, b],−∞ < a < b <∞ of the covariable X can be reduced to
[0, 1] by applying the transformation: (X − a)/(b− a).

2.3.1. Linear wavelet estimator

Consider the pairewise observations (xl, Zl), l = 1, . . . ,m = 2J , J positive integer,
from model (6). Then natural estimators for the scaling coefficients αj0,k and the
detail coefficients βj,k can be respectively defined as

α̂j0,k =
1

m

m∑
l=1

Zlφj0,k(xl) and β̂j,k =
1

m

m∑
l=1

Zlψj,k(xl), j ≥ j0.

Given a resolution level jm ≥ j0, the linear shrinkage rule ”kills” all the detail
coefficients in decomposition (2) from level jm by posing :

β̂j,k = 0, j ≥ jm, k = 0, 1, . . . , 2j − 1.

This, results in the linear wavelet estimator of η:

η̂jm(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x) +

jm∑
j=j0

2j−1∑
k=0

β̂j,kψj,k(x) =

2jm−1∑
k=0

α̂jm,kφjm,k(x), x ∈ [0, 1],
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which corresponds to the estimation of the orthogonal projection of function η
onto the sub-space Vjm element of the multi-resolution analysis (Vj)j∈Z generated
by the father wavelet φ.

The optimality, in the minimax sense, of linear wavelet estimators is often inves-
tigated over Besov function classes and for Lp-risks, 0 < p ≤ ∞. Under certain
regularity conditions including: 2jm ' m

1
2s+1 , the linear wavelet estimator η̂jm

attains the optimal rate of convergence, which is of the order O(m
−s

2s+1 ), over the
Besov balls Bsr,q(M) of radius M > 0, with s > 0, 0 < p, q ≤ ∞. For more details see,
e.g., Donoho et al.(1996), Härdle et al.(1998).

A major drawback of the linear shrinkage rule is that the optimal rate of conver-
gence depends on the regularity s of the function η, which is unknown in practice.
This rule is thus not appropriate, when the function η is not very regular. For such
functions one usually relies on nonlinear shrinkage rules.

2.3.2. Nonlinear wavelet estimator

Let j0, jm be two resolution levels, both of them depending on m, with jm > j0.
There are two popular ways to define nonlinear (or thresholding) wavelet estima-
tors : hard-thresholding and soft-thresholding rules. Given a threshold t > 0, the
nonlinear wavelet estimator of η is generally defined as

η̂∗m(x) =

2j0−1∑
k=0

α̂j0,kϕj0,k(x) +

jm−1∑
j=j0

2j−1∑
k=0

γ∗(β̂jk, t)ψj,k(x), x ∈ [0, 1],

where γ∗(·, t) is a threshold function defined as

γ∗(y, t) =

{
sgn(y)(|y| − t)I(|y| > t) for soft-thresholding,
yI(|y| > t) for hard-thresholding

where sgn(y) designs the sign of y and I(A) is indicator of a set A.

The optimality, in the minimax sense, of nonlinear wavelet estimators has also been
investigated over Besov function classes and for Lp-risks. The additional hypothe-
sis, compared to the linear case, is that the support of the function to be estimated
is compact. It is proved (see, e.g. Donoho et al.(1996), Härdle et al.(1998)) that
nonlinear wavelet estimators are near optimal (up to a logarithmic factor) under
certain conditions.
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3. Simulation study

In this section we evaluate the finite sample performance of our wavelet approach.
To this end, we compute the integrated square error (ISE) of the wavelet shrinkage
estimator and report the mean after B replications. We take the covariate X to
be uniformly distributed in [0, 1], and deal with three parametric copula families:
Clayton, Gumbel and Frank, with parameter function θ(X) = g−1(η(x)), where g−1
is a specific link function and η is the calibration function chosen arbitrarily in
these simulations. Note that the link function is g−1(t) = exp(t) for Clayton copula,
g−1(t) = exp(t) + 1 for Gumbel copula and g−1(t) = t for Frank copula. We also
suppose that the laws of the margins Y1 and Y2 are influenced by the covariate
values x according to the following models : Y1 ∼ N (sin(x), |x|2 ) and Y2 ∼ E(ex/4).

We first generate n values xi, i = 1, . . . , n for the covariate X, and then generate n
pairs of data (u1i, u2i); i = 1, . . . , n according to the given parametric copula with
parameter θ(xi). Finally, we compute (y1i, y2i); i = 1, . . . , n by using the quantile
functions associated with the laws of Y1 and Y2, respectively. Simulations are done
with two specific forms of calibration function inspired from Acar et al.(2011) : a
linear form η(x) = x+ 1 and a quadratic form η(x) = 2− 0.3(x− 2/3)2.

The wavelet shrinkage estimator is computed using Mallat’s algorithm described
in subsection 2.2. A universal soft-thresholding is applied : t = σ

√
2 logm, where m

is the number of grid-points. As usual, the noise σ is estimated by taking the me-
dian absolute deviation of the wavelet coefficients at the finest resolution level, and
dividing by 0.6745. All computations are done using the R-package ”WaveThresh”,
which employs the least asymmetric Daubechies’ wavelet with 10 vanishing mo-
ments. Our performance criterion is the integrated square error (ISE) given by

ISE =
1

m

m∑
l=1

(η̂(xl)− η(xl))
2.

We report the mean after B = 1000 replications. The effect of bin size (number)
on the performance of the estimators is shown in Table 1 for Clayton copula and
with two calibration function forms for η: linear and quadratic. One can see that
the optimal number of bins depends on the sample size n. The optimal bin size is:
m = 16 for n = 500, m = 32 for n = 1000,m = 64 for n = 2000 and m = 128 for n = 4000.
We obtain similar results for Gumbel and Frank copulas.

Table 2 shows the results for the linear specification η(x) = x+ 1, whereas Table 2
displays the results for the quadratic specification η(x) = 2 − 0.3(x − 2/3)2. These
results show that our wavelet regression approach has a good a performance, when
both m and n increase and the ratio m

n tends to a constant. We can also observe
that the speed of convergence is faster in the quadratic calibration model than in
the linear one. Furthermore, one can also remark that the performance is better
in the Clayton and Gumbel cases than in the Frank case. This might be due to the
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n = 500

Number of bins(m) 8 16 32 64

Linear 0.0604 0.0532 0.1055 0.0716
Quadratic 0.1148 0.0083 0.0406 0.0119

n = 1000

Number of bins(m) 8 16 32 64 128

Linear 0.1045 0.0450 0.0120 0.0951 0.0845
Quadratic 0.0652 0.0145 0.0071 0.0140 0.0244

n = 2000

Number of bins(m) 8 16 32 64 128 256

Linear 0.0459 0.0300 0.0570 0.0271 0.0689 0.0732
Quadratic 0.1571 0.0121 0.0025 0.0013 0.0105 0.0190

n = 4000

Number of bins(m) 8 16 32 64 128 256 512

Linear 0.0313 0.0081 0.0209 0.0416 0.0169 0.0534 0.0488
Quadratic 0.082 0.0489 0.0037 0.0058 0.0025 0.0124 0.0055

Table 1. Effect of binning on the performance of the estimator, with data generated
by Clayton copula.

fact that the Kendall’s tau inverse for Frank copula may not be precise because of
the approximation of the Debye function.

(m,n) (8, 250) (16, 500) (32, 1000) (64, 2000) (128, 4000) (256, 8000)

Clayton 0.0891 0.0807 0.0737 0.0712 0.0559 0.0544

Gumbel 0.0761 0.0754 0.0661 0.0610 0.0584 0.0573

Frank 0.2511 0.2474 0.1277 0.0933 0.0924 0.0882

Table 2. Integrated square error of the wavelet shrinkage estimator in the case of
linear calibration : η(x) = x+ 1.

(m,n) (8, 250) (16, 500) (32, 1000) (64, 2000) (128, 4000) (256, 8000)

Clayton 0.0189 0.0107 0.0022 0.0017 0.0015 0.0014

Gumbel 0.0223 0.0207 0.0161 0.0120 0.0100 0.0097

Frank 0.3029 0.1637 0.0805 0.0340 0.0269 0.0121

Table 3. Integrated square error of the wavelet shrinkage estimator in the case of
quadratic calibration : η(x) = 2− 0.3(x− 2/3)2.
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4. Application to real data

In this section we apply our results to meteorological data provided by ANACIM
(National Agency for Civil Aviation and Meteorology of Senegal) during the pe-
riod 1960-2019. The extracted data concern n = 708 monthly observations of
the following variables : maximum relative humidity (Umax), minimum relative
humidity (Umin) in percentage (%), and maximum temperature (Tmax) in Celsius
degrees (°C). Our aim is to study the effect of the maximum temperature on the
dependence structure between the maximum and the minimum relative humidity
variables. That is we want to know if the temperature (Tmax) influences the
strength of the dependence between the humidity variables Umax and Umin?

Figure 1 shows scatter plots of the two humidity variables Umax and Umin and
their transformations into uniform scale. It clearly exibits a certain dependence
between these two variables. The question is now does the temperature affect this
dependence?

(a) (b)

Fig. 1. Scatterplots of (a) the humidity variables Umax, Umin and (b) their uniform-
scale transforms.

Our covariate Tmax (temperature) takes values in the interval [20, 40], and the
sample size n = 720. Then, we subdivise the support of Tmax into m = 25 = 32 bins.
We take the binwidth ∆ as equal to the range of Tmax divided by the number m of
bins . We can now apply the wavelet shrinkage method described in Subsection 2.2
to estimate the calibration function η from which we derive the copula parameter
function θ, and then the kendall’s tau as a function of the covariate Tmax. The
results are shown in Figure 2. We also apply the methodology for a number of bins
m = 16 corresponding to J = 4, and obtain similar results.
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Figure 2 represents the kendall’s tau of the the two humidity variables accord-
ing to three parametric copulas : Clayton, Gumbel and Frank. It shows that the
maximum temperature has actually an effect on the dependence strength between
the two humidity variables. This effect is more pronounced whenever the maxi-
mum temperature (Tmax) takes either very small values or very large values. In
contrast, whenever the maximum temperature Tmax takes average values around
28°C, then it weakly influences the strength of dependence between the two hu-
midity variables because the Kendall’s tau is minimum.
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Fig. 2. Wavalet shrinkage estimation of Kendall’s tau for Clayton, Gumbel and
Frank conditional copulas.

5. Conclusion

In this paper we applied a wavelet regression approach to estimate the relationship
between the dependence parameter θ and some real co-variate X in a conditional
copula model where the copula family considered is parametric. This approach
based on the Mallat’s algorithm presents some advantages such as fast computa-
tion of the wavelet estimators and their theoretical near optimality over a wide class
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of regular functions and for a large range of Lp-risks. The results have been applied
to a real data-set to analyze the effect of the temperature on the dependence struc-
ture between the maximum and minimum relative humidity variables. We found
that, the temperature influences the strength of dependence between these two
humidity variables, whenever it takes either very larger values or very small values.

However, this temperature-influence is not statistically tested. Thus, performing
a general likelihood ratio test to assess the significance of this influence could
be an important issue in the future. As well, it might be interesting to compare
our approach to that of Acar et al.(2011), who utilized a local linear estimation
approach for the calibration function η.
Acknowledgment. The authors are very grateful to the reviewers for their useful
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A. Sklar, Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut

de Statistique de l’Université de Paris, 8, 229-231, 1959.
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